Pinane-Type Tridentate Reagents for E nantioselective Reactions: Reduction of Ketones and Addition of Diethylzinc to Aldehydes

Yie-J ia Cherng, ${ }^{\dagger}$ J im-Min Fang,*,† and Ta-J ung Lu*, \ddagger
Department of Chemistry, National Taiwan University, Taipe 106, Taiwan, Republic of China, and Department of Chemistry, National Chung-Hsing University, Taichung 402, Taiwan, Republic of China

Received December 8, 1998

Abstract

The reduction of aryl and alkenyl methyl ketones using lithium aluminum hydride modified with (1R,2S,3S,5R)-(+)-10-anilino-3-ethoxy-2-hydroxypinane (10b) afforded chiral secondary alcohols in 83-96\% chemical yields and $50-91 \%$ ee with dominance of R enantiomers. The reduction of acetophenone in the presence of lithium iodide gave the alcohol product with higher ee. On the other hand, the addition reaction of diethylzinc to benzaldehyde using the pinane-based diols 5-9 as promoters gave 1-phenylpropanol in favor of the S enantiomer up to 88% ee. Using the pinanebased alcohols 10a-e as promoters, the R enantiomer was obtained as the major product. The addition reactions of diethylzinc to various substituted benzal dehydes, employing the diol ligands $\mathbf{5 c}$ and $\mathbf{8 e}$, afforded predominantly the corresponding (S)-al cohols. The chiral modifiers 5-10 were prepared from (1R)-(-)-myrtenol and were readily recovered (>90\%) after the asymmetric reactions. In this study, LAH reduction and $\mathrm{Et}_{2} \mathrm{Zn}$ addition are complementary methods for the preparation of optically active secondary al cohols. The ligand 10-butylanilino-2,3-dihydroxypinane 5 c promoted the $E t_{2} \mathrm{Zn}$ additions effectively, whereas the modifier 10-anilino-3-ethoxy-2-hydroxypinane 10b induced the LAH reductions in a highly enantioselective manner.

Introduction

Enantiomerically pure chiral secondary alcohols are important starting materials for the total synthesis of natural products. ${ }^{1}$ Asymmetric reduction of ketones ${ }^{2}$ and nucleophilic addition to aldehydes ${ }^{3}$ are two general methods for the preparation of optically active secondary alcohols. In this paper, we report the use of pinane-type tridentates 5-12 (Figure 1) as the chiral modifiers of lithium aluminumhydride (LAH) reductions and diethylzinc additions. Asymmetric LAH reduction ${ }^{2}$ and $\mathrm{Et}_{2} \mathrm{Zn}$ addition ${ }^{3}$ have been advanced to achieve high efficiency and remarkable enantioselectivity. Pinanes and their derivatives are economic and readily available compounds; pinane-derived boranes, ${ }^{4}$ such as Alpine-Borane

[^0]and $(\mathrm{Ipc})_{2} \mathrm{BCl}$, have been successfully utilized in asymmetric reduction of ketones. Unlike bidentate chiral ligands, the tridentate chiral ligands are not extensively studied. We envisaged that LAH and $E t_{2} \mathrm{Zn}$ can be modified by the tridentate ligands 5-12 to form chiral reagents with rigid structure, which may exert distinct stereochemi cal bias to convey asymmetric induction. We report herein the study in this aspect. ${ }^{5}$

Results and Discussion

Preparation of pinane-type tridentates 5-12 was straightforward (Scheme 1). (1R)-(-)-M yrtenol (1) was reacted with PBr_{3} to give (1R)-(-)-myrtenyl bromide (2) in 85% yield. The substitution reaction of $\mathbf{2}$ was easily carried out by treatment with a series of amines and alcohols, giving 3 and 4, which were subsequently converted to diols 5-9 by the known procedure using $\mathrm{OsO}_{4}-\mathrm{Me} \mathrm{NOO}_{3}$ as the oxidizing agents. Alternatively, compounds 4 could be prepared by alkylation of (1R)-(-)-myrtenol with alkyl bromides. Sel ective alkylation of the secondary hydroxyl group of the diols 5-9 furnished the desired modifiers 10-12 in respectable yields.

To determine the optical purity of the prepared ligands, a 3,5-di nitrobenzoate derivative $\mathbf{1 3}$ was synthesized from 10b for HPLC analysis (Scheme 2). A racemic mixture of β-pinene underwent photooxidation, followed by NaBH_{4} reduction of the resulting hydroperoxide, to afford (\pm)myrtenol. By a procedure similar to that described in Scheme 1, (\pm)-myrtenol was transformed into (\pm)-10b via dihydroxylation and selective ethylation of the resulting diol. Treatment of (\pm)-10b with 3,5-dinitrobenzoyl chloride in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ yielded a racemic ester (\pm)13, of which two enantiomers were separable on a
(5) Our earlier reports on asymmetric LAH reductions: (a) Lu, T.J.; Liu, S.-W. J. Chin. Chem. Soc. 1994, 41, 205. (b) Lu, T.-J.; Liu, S.-W. J. Chin. Chem. Soc. 1994, 41, 467. (c) Cherng, Y.-J .; Fang, J .M.; Lu, T.-J. Tetrahedron: Asymmetry 1995, 6, 89.

5a $R=M e$
5b $R=E t$
5c $R=n-B u$
5d $\mathrm{R}=\mathrm{Ph}$

7a $\mathrm{R}=\mathrm{Me}$
7b $\mathrm{R}=n-\mathrm{C}_{8} \mathrm{H}_{17}$
7c $\mathrm{R}=\mathrm{CH}(\mathrm{n}-\mathrm{Bu})_{2}$
7d $\mathrm{R}=\mathrm{CMe}_{2} \mathrm{CHMe}_{2}$
7e $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$

9a $\mathrm{R}^{1}=i-\mathrm{Pr}, \mathrm{R}^{2}=\mathrm{H}$ 9b $R^{1}=t-B u, R^{2}=M e$

9d

11

6a $R=H$
6b R $=\mathrm{Me}$
6c $\mathrm{R}=\mathrm{n}-\mathrm{Pr}$
6d $\mathrm{R}=i \mathrm{Pr}$
$6 \mathrm{e} \mathrm{R}=t-\mathrm{Bu}$
6f $\mathrm{R}=\mathrm{OMe}$

10a $R=M e$
10b $\mathrm{R}=\mathrm{Et}$
10c $R=n-\mathrm{Pr}$
10d $R=n-B u$
10e $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$

12

Figure 1. Pinane-type tridentates used in this study.
Chiralcel OD column. An optically enriched sample 10b, $[\alpha]^{25}{ }_{\mathrm{D}}+11.5\left(\mathrm{CHCl}_{3}, \mathrm{c} 1.04\right)$ was similarly prepared from (1R)-(-)-myrtenol and converted to the ester 13, which consisted of two enantiomers in a ratio of 96.9:3.1 as determined by the HPLC analysis. The original sample of (1R)-(-)-myrtenol and the ligand (+)-10b therefrom were thus deduced to have 93.8% enantiomeric excess (ee).

LAH Reductions. Our preliminary study ${ }^{5 \mathrm{a}, \mathrm{b}}$ indicated that secondary alcohols can be obtained in moderate optical yields (up to 52%) in the reduction of prochiral ketones by LAH using pinane-based diol modifiers 5-9. After examination of the Dreiding molecular models of putative transition structures (see Figure 3) ${ }^{6}$ in an attempt to develop more effective modifiers, we envisaged that a C-3 alkoxy group is sterically more demanding than a hydroxyl group and therefore can better dif-

Scheme 1a

$$
\begin{aligned}
& 5-6 X=N R^{1} R^{2} \\
& 7-9 X=O R^{3}
\end{aligned}
$$

$$
10-11 X=N R^{1} R^{2}
$$

$$
12 \quad X=O R^{3}
$$

a Reagents and conditions: (i) PBr_{3}, pyridine, $\mathrm{PhH}, \mathrm{rt}, 1 \mathrm{~h}, 85 \%$; (ii) $\mathrm{KH}, \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NH}, \mathrm{THF}, \mathrm{rt}, 3 \mathrm{~h}, 74-85 \%$; (iii) $\mathrm{R}^{3} \mathrm{OH}, \mathrm{KH}, \mathrm{THF}, \mathrm{rt}$, $6 \mathrm{~h}, 65-81 \%$; (iv) NaH or $\mathrm{KH}, \mathrm{R}^{3} \mathrm{Br}, \mathrm{rt}, 6 \mathrm{~h}, 80-98 \%$; (v) OsO_{4}, Mes $\mathrm{NO}, \mathrm{THF} / \mathrm{Me}_{2} \mathrm{CO} / \mathrm{H}_{2} \mathrm{O}$, reflux, 4 days, $50-81 \%$; (vi) $\mathrm{NaH}, \mathrm{R}^{4} \mathrm{Br}$, rt, 24 h, 76-92\%.

Scheme 2a

a Reagents and conditions: (i) $\mathrm{O}_{2}, \mathrm{TPP}, \mathrm{h} \nu, \mathrm{CHCl}_{3}$; (ii) NaBH_{4}, MeOH ; (iii) PBr_{3}, pyridine, $\mathrm{PhH}, \mathrm{rt}, 85 \%$; (iv) $\mathrm{KH}, \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NH}, \mathrm{THF}$, rt, 85%; (v) $\mathrm{OsO}_{4}, \mathrm{Me}_{3} \mathrm{NO}, \mathrm{THF} / \mathrm{Me}_{2} \mathrm{CO} / \mathrm{H}_{2} \mathrm{O}$, reflux, 50%; (vi) NaH , $\mathrm{EtBr}, 83 \%$; (vii) $3,5-\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COCl}, \mathrm{Et}_{3} \mathrm{~N}$.
ferentiate the two reaction faces of the reactant. Thus, rationally designed pinane-based modifiers 10-12, possessing a rigid bicydlic pinane skeleton and an ethoxy substituent at C-3, were prepared. ${ }^{5 c}$ The LAH reduction of acetophenone using modifiers 11 or 12, having benzyloxy or N -methylanilino groups at $\mathrm{C}-10$, still resulted in low enantioselectivity (up to 26% ee). However, remarkable enantioselectivity was procured by using the modifier $\mathbf{1 0}$ containing an anilino group at C-10. Table 1 lists the results of asymmetric LAH reductions of acetophenone and 1-acetylnaphthalene using modifiers 10a-e with different alkoxy groups at C-3. The reactions were carried out in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}(1: 10)$ solution with a ratio of $\mathrm{LAH} /$ modifier/ketone $=2.0: 2.2: 1.0$. The best ee values, 62% and 80% for the reactions of acetophenone and 1-acetylnaphthalene, were obtained by using the modifier $\mathbf{1 0 b}$ having an ethoxy group at C-3. Use of 10e having a benzyloxy group at C-3 resulted in an opposite enantiotopic selection, though the ee values were low (15\% and 3%).

[^1]| entry | ketone | $\begin{aligned} & \text { modifier, } \\ & \mathrm{R}= \end{aligned}$ | product (yield/\%) ${ }^{\text {b }}$ | $\begin{gathered} \text { eed } \\ \% \end{gathered}$ | config ${ }^{\text {d }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | acetophenone | 10a, Me | 14a (83) | 48 | R |
| 2 | acetophenone | 10b, Et | 14a (85) | 62 | R |
| 3 | acetophenone | 10c, Pr | 14a (85) | 47 | R |
| 4 | acetophenone | 10d, Bu | 14a (86) | 46 | R |
| 5 | acetophenone | 10e, PhCH_{2} | 14a (84) | 14 | S |
| 6 | 2-acetylnaphthalene | 10a, Me | 14i (84) | 55 | R |
| 7 | 2-acetylnaphthalene | 10b, Et | $14 i$ (93) | 80 | R |
| 8 | 2-acetylnaphthalene | 10c, Pr | $14 i$ (87) | 62 | R |
| 9 | 2-acetylnaphthalene | 10d, Bu | 14i (86) | 66 | R |
| 10 | 2-acetylnaphthalene | 10e, PhCH_{2} | 14i (90) | 3 | S |

a The reaction was conducted in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}(1: 10)$ solution at $-78{ }^{\circ} \mathrm{C}$ for 1 h with a molar ratio of LAH/modifier/ketone $=2.0$: 2.2:1.0. ${ }^{\text {b }}$ Isolated yields. ${ }^{\mathrm{c}}$ The ee value was determined by HPLC analysis. ${ }^{\text {d }}$ The configuration of the major enantiomer was assigned by comparison of the optical rotation with the reported value.

Table 2. Reduction of Methyl Ketones RCOCH_{3} with LiAlH_{4} and Chiral Modifier 10ba

entry	$\mathrm{RCOCH}_{3}, \mathrm{R}=$	additive (equiv) ${ }^{\text {b }}$	product (yield/\%)	$\begin{gathered} \hline \text { ee } \\ (\%) \end{gathered}$	config
1	Ph		14a (85)	62	R
2	Ph	Lil (1)	14a (91)	83	R
3	o-tolyl		14b (86)	79°	R
4	2-bromophenyl		14c (86)	78	R
5	2-chlorophenyl		14d (86)	78	R
6	2-methoxyphenyl		14 e (86)	91	R
7	2-nitrophenyl		14 f (85)	$72^{\text {d }}$	R
8	2,4-dimethyl phenyl		14g (87)	74	R
9	2,5-dimethoxyphenyl		14h (91)	91	R
10	1-naphthyl		14i (93)	80	R
11	1-naphthyl	Lil (1)	14i (92)	84	R
12	1-naphthyl	HMPA (6)	14i (85)	66	R
13	2-naphthyl		14j (96)	50	R
14	2-phenanthyl		14k (94)	87	
15	2-fluorenyl		141 (95)	81	
16	2-furyl		15 (88)	52	R
17	2-thienyl		16a (90)	83	R
18	2-(3-methylthienyl)		16b (92)	54	
19	2-(5-chlorothienyl)		16c (92)	61	
20	2-(5-bromothienyl)		16d (94)	63	
21	$\mathrm{PhCH}=\mathrm{CH}$		17 (93)	50	R
22	$\mathrm{PhCH}=\mathrm{CH}$	Lil(1)	17 (91)	52	R
23	1-cyclohexenyl		18 (89)	$74^{\text {d }}$	R

${ }^{\text {a }}$ Refer to the footnote of Table 1 for reaction conditions, isolated yields, ee values, optical yields, and absolute configuration of major enantiomers. ${ }^{\text {b }}$ Based on the amount of respective ketone. ${ }^{\mathrm{c}}$ The alcohol product was treated with phenyl isocyanide to give the corresponding carbamate, of which the ee value was determined by HPLC analysis. ${ }^{d}$ The alcohol product was treated with 3,5dinitrobenzoyl chloride to give the corresponding ester, of which the ee value was determined by HPLC analysis.

Several mono- and disubstituted acetophenones were reduced by $\mathrm{LAH} / \mathbf{1 0 b}$ (Table2) to afford the corresponding phenylethanols 14a-h (Figure 2) in favor of the R configuration al cohols (62-91\% ee). The chiral reducing agent was prepared in situ by mixing a standardized $\mathrm{Et}_{2} \mathrm{O}$ stock solution of LAH with modifier 10b at room temperature for 1 h . THF solutions of prochiral ketones were then added at $-78^{\circ} \mathrm{C}$ and stirred for another 1 h to furnish the corresponding secondary alcohols in 83$96 \%$ chemical yields. The nitro group did not interfere with the reduction of methyl 2-nitrophenyl ketone (Table 2, entry 7), giving 85\% of the desired al cohol. The chiral modifier 10b was recovered nearly quantitatively (>96\%) from the reaction mixture by silica gel chromatography. Among the examined examples, the reduction of 2^{\prime} methoxyacetophenone and $2^{\prime}, 5^{\prime}$-dimethoxyacetophenone

OH	14a $\mathrm{Ar}=\mathrm{Ph}$	$14 \mathrm{~g} \mathrm{Ar}=2,4-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
Ar $\times \mathrm{Me}$	$14 \mathrm{c} \mathrm{Ar}=0-\mathrm{BrC}_{6} \mathrm{H}_{4}$	14i $\mathrm{Ar}=1-$ Naphthyl
	14d $\mathrm{Ar}=0-\mathrm{ClC}_{6} \mathrm{H}_{4}$	14j Ar $=2$-Naphthyl
(R)-form	14e $\mathrm{Ar}=0-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	14k Ar $=2$-Phenanthyl
	14f $\mathrm{Ar}=0-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	$141 \mathrm{Ar}=2$-fluorenyl

$17(R)$-form

$18(R)$-form

	$\begin{aligned} & 19 a R=H \\ & 19 b R=0-F \end{aligned}$	$\begin{aligned} & 19 e \mathrm{R}=p-\mathrm{Cl} \\ & 19 \mathrm{f} \mathrm{R}=m-\mathrm{Br} \end{aligned}$
-	19c $\mathrm{R}=\mathrm{p}-\mathrm{F}$	$19 \mathrm{gR}=\mathrm{p}-\mathrm{Br}$
(S)-form	19dR $=\mathrm{m}-\mathrm{Cl}$	19h $\mathrm{R}=\mathrm{p}-\mathrm{Me}$

Figure 2. In this study, the asymmetric LAH reduction gave predominantly (R)-alcohols 14-18, whereas the asymmetric $\mathrm{Et}_{2} \mathrm{Zn}$ addition gave predominantly (S)-alcohols 19.
(Table 2, entries 6 and 9) gave the highest optical yield (97%) by calculation based on the maximum optical purity (93.8%) of the modifier 10b.
A wide range of aromatic and alkenyl methyl ketones can be reduced by LAH in the presence of modifier 10b to give chiral secondary alcohols in synthetically useful yields and enantioselectivities. 1-Acetylnaphthalene, 2-acetyl naphthal ene, 2 -acetyl phenanthrene, and 2 -acetylfluorene were reduced to give $80,50,87$, and 81% ee, respectively. Heterocyclic compounds, such as 2-acetylfuran and 2-acetylthiophenes (Table 2, entries 16-20), were similarly reduced to achieve $52-83 \%$ ee. The reductions of 4-phenyl-3-buten-2-one and cyclohexenyl methyl ketone also produced the corresponding allylic alcohols with predominance of R enantiomers. No 1,4reduction products were observed in such instances.
A 1:10 mixture of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$ appeared to be the sol vent of choice for the asymmetric LAH reduction. When the reduction of 1-acetylnaphthalene was conducted in $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$ (1:1) solution, the enantioselectivity dropped dramatically, giving 14i with $31-35 \%$ ee. As the addition of HMPA or lithium iodide is known to affect the enantioselectivities in certain reactions (such as alkylation reactions of enolates or allylmetals), ${ }^{7}$ we also examined their effects in the LAH reductions. Our results indicated that the enantioselectivity of the al cohol products was increased in some instances by addition of Lil (Table 2, entries 2, 11, and 22). On the other hand, the enantioselectivity decreased in the reduction of 1-acetylnaphthalene in the presence of the cosolvent HMPA (Table 2, entry 12).

[^2]

A (si-face attack)

B, $X=O R$ or NRAr (si-face attack)

Figure 3. Favorable transition states proposed for the asymmetric LAH reduction (\mathbf{A}) and $\mathrm{Et}_{2} \mathrm{Zn}$ addition (B).

The facial selectivities realized in the LAH reduction of aromatic methyl ketones using modifier 10b are superior to those utilizing simple terpenic diol modifiers ($<30 \%$ ee). ${ }^{8}$ Our results demonstrated the importance of the anilino substituent at C -10 in the modifier 10b, compared with the N-methylanilino substituent of $\mathbf{1 1}$ or the benzyloxy substituent of $\mathbf{1 2}$, for the control of chirality in the enantioselective LAH reduction of ketones. The asymmetric induction was further improved by the ethoxy group at C-3 of modifier 10b, compared with the hydroxyl group of modifiers 5-9. A possible transition state for the stereochemical outcome, as exemplified by the reaction of acetophenone, is illustrated in Figure 3 (A). ${ }^{6}$ The chiral LAH/10b reagent is presumably formed by $\mathrm{O}-\mathrm{Al}-\mathrm{N}$ bondings and $\mathrm{O}-\mathrm{Li}-\mathrm{O}$ chelation. The ethoxy group at C-3 thus plays a role to differentiate two reaction faces of this chiral reducing agent. The incoming carbonyl group would coordinate with the Li^{+}ion to form a chairlike transition state, in which the aryl group is equatorially oriented. Attack of hydride thus occurs at the si-face of acetophenone to furnish the observed R alcohol. The alternative transition state by placing the bulkier aryl group on the axial position is disfavored as it would exert repulsions against the anilino and ethoxy groups. Diols 5-9 are poor modifiers because their hydroxyl groups at C-2 and C-3 would compete in bonding with aluminum hydride and thus reduce the face selection.
$\mathbf{E t}_{\mathbf{2}} \mathbf{Z n}$ Addition. Unlike LAH reduction, modifiers 5-10 operated differently in the addition of diethylzinc onto benzaldehyde. The diol ligands 5-9 turned out to be better promoters than the alcohol ligand $\mathbf{1 0}$ for the asymmetric $\mathrm{Et}_{2} \mathrm{Zn}$ addition reactions. The addition reaction with benzaldehyde was generally carried out at room temperature by using 2.2 equiv of $\mathrm{Et}_{2} \mathrm{Zn}$ and $2 \mathrm{~mol} \%$ of a pinane-type promoter (Table 3). The reaction using al cohol ligands 10a-d gave the product 1-phenylpropanol (19a) in favor of the R enantiomer ($9-50 \%$ ee), whereas that using diol ligands 5-9 gave predominantly the S enantiomer (up to 88\% ee).

The chemical yields of S enriched alcohol 19a were in the range of $75-92 \%$, and the chiral ligands were recovered in good yields (ca. 94\%) from the reaction mixture by silica gel chromatography. The ee value of 19a was determined by HPLC on a Chiral cel OD column. In most cases, the reactions performed in hexane solution tended to show higher asymmetric induction than those performed in toluene. The $\mathrm{Et}_{2} \mathrm{Zn}$ addition reactions using either the ligand $\mathbf{8 e}$ or the diastereomer $\mathbf{8 f}$, prepared from (1R)-myrtenol with (S)- or (R)-1-phenylbutanol,

[^3] Lund, E. D.; Shaw, P. E. J. Org. Chem. 1977, 42, 2073.

Table 3. Chiral Ligand Promoted Reaction of Benzaldehyde with Diethylzinc, Giving Alcohol 19a ${ }^{\text {a }}$

entry	ligand	yieldb/\%	eeb/\%	config ${ }^{\text {b }}$
1	10a	(60) ${ }^{\text {c }}$	(9) ${ }^{\text {c }}$	R
2	10b	(73) ${ }^{\text {c }}$	(47) ${ }^{\text {c }}$	R
3	10c	(68) ${ }^{\text {c }}$	(50) ${ }^{\text {c }}$	R
4	10d	(66) ${ }^{\text {c }}$	$(46)^{\text {c }}$	R
5	5a	85 (81) ${ }^{\text {c }}$	82 (62) ${ }^{\text {c }}$	S
6	5b	84 (83) ${ }^{\text {c }}$	82 (79) ${ }^{\text {c }}$	S
7	5c	83 (81) ${ }^{\text {c }}$	88 (79) ${ }^{\text {c }}$	S
8	5d	84 (82) ${ }^{\text {c }}$	82 (79) ${ }^{\text {c }}$	S
9	6a	87 (77) ${ }^{\text {c }}$	37 (16) ${ }^{\text {c }}$	S
10	6b	81 (80) ${ }^{\text {c }}$	77 (69) ${ }^{\text {c }}$	S
11	6c	77 (77) ${ }^{\text {c }}$	69 (62) ${ }^{\text {c }}$	S
12	6d	83 (79) ${ }^{\text {c }}$	86 (78) ${ }^{\text {c }}$	S
13	6 e	84 (84) ${ }^{\text {c }}$	84 (85) ${ }^{\text {c }}$	S
14	$6 f$	79 (75) ${ }^{\text {c }}$	23 (11) ${ }^{\text {c }}$	S
15	7b	86 (88) ${ }^{\text {c }}$	77 (57) ${ }^{\text {c }}$	S
16	7c	87 (83) ${ }^{\text {c }}$	81 (72) ${ }^{\text {c }}$	S
17	7d	86 (84) ${ }^{\text {c }}$	86 (80) ${ }^{\text {c }}$	S
18	7e	84 (87) ${ }^{\text {c }}$	81 (73) ${ }^{\text {c }}$	S
19	8a	88 (88) ${ }^{\text {c,d }}$	76 (74) ${ }^{\text {c,d }}$	S
20	8b	84 (85) ${ }^{\text {c }}$	77 (71) ${ }^{\text {c }}$	S
21	8c	81 (88) ${ }^{\text {c }}$	70 (79) ${ }^{\text {c }}$	S
22	8d	84 (85) ${ }^{\text {c }}$	79 (78) ${ }^{\text {c }}$	S
23	8 e	91 (92) ${ }^{\text {c,d }}$	86 (82) ${ }^{\text {c,d }}$	S
24	$8 f$	(68) ${ }^{\text {e }}$	(70) ${ }^{\text {e }}$	S
25	9a	80 (85) ${ }^{\text {c }}$	70 (80) ${ }^{\text {c }}$	S
26	9b	85 (90) ${ }^{\text {c }}$	84 (84) ${ }^{\text {c }}$	S
27	9c	82 (85) ${ }^{\text {c }}$	61 (75) ${ }^{\text {c }}$	S
28	9d	85 (89) ${ }^{\text {c }}$	83 (79) ${ }^{\text {c }}$	S

a The reaction was conducted in hexane solution at room temperature for 16 h with a molar ratio of $\mathrm{PhCHO} / \mathrm{Et}_{2} \mathrm{Zn} / \mathrm{ligand}$ $=1.0: 2.2: 0.02$. ${ }^{\text {b }}$ Refer to the footnote of Table 1 for isolated yields, ee values, and absolute configuration of major enantiomers. ${ }^{\text {c }}$ The number in parentheses indicates the result of a similar reaction conducted in toluene solution. ${ }^{\text {d }}$ The yield and ee value of the al cohol product 19a decreased when the reaction was performed with 1.2 equiv of $\mathrm{Et}_{2} \mathrm{Zn}$ in toluene solution. Using 8a: 68% yield, 66% ee. Using 8e: 72% yield, 75% ee. eThe reaction was performed with 1.2 equiv of $\mathrm{Et}_{2} \mathrm{Zn}$ in toluene solution.

Table 4. Nonlinear Effect of Optically Enriched Ligand 8 e in the Reaction of Benzaldehyde with Diethylzinc, Giving Alcohol 19a ${ }^{\text {a }}$

entry	ee/\% of 8e	yield/\%	ee/\% of 19a	config
1	14.1	88	33	S
2	23.5	87	41	S
3	37.6	89	54	S
4	47.0	88	67	S
5	70.5	88	77	S
6	93.8	91	82	S

a Molar ratio $\mathrm{PhCHO} / \mathrm{Et}_{2} \mathrm{Zn} / 8 \mathbf{e}=1.0: 2 \cdot 2: 0.02$. The reaction was conducted in hexane solution, refer to Table 3 for detailed conditions.
occurred with the same enantiotopic face selection (compared entries 23 and 24 of Table 3). The enantioselectivity slightly decreased when the reaction was conducted with 1.2 equiv of $E t_{2} Z n$ (entries 19 and 23, Table 3). A nonlinear asymmetric effect was observed by using the chiral ligand $\mathbf{8 e}$ of different optical purities to promote the addition of $\mathrm{Et}_{2} \mathrm{Zn}$ with PhCHO . The product (S)-19a was obtained in a higher optical yield by comparison with the optical purity of the starting ligand $\mathbf{8 e}$, when $\mathbf{8 e}$ had 70.5% or less enantiomeric excesses (entries 1-5, Table 4).

Using diol ligands 5c or $\mathbf{8 e}$ as the chiral promoters, the addition reactions of $E t_{2} \mathrm{Zn}$ to various substituted benzaldehydes also afforded the products $\mathbf{1 9 b} \mathbf{- h}$ in dominance of S enantiomers (Table 5). The ee values of 19b-h were determined by HPLC analyses of their

Table 5. Chiral Ligand Promoted Reaction of Substituted Benzaldehydes with Diethylzinc ${ }^{\text {a }}$

entry	aldehyde	ligand	product ${ }^{\text {b }}$	yield/\%	ee/\%	config ${ }^{\text {c }}$
1	o-FC6 $\mathrm{H}_{4} \mathrm{CHO}$	5c	19b	80	75	S
2	o-FC66 ${ }_{4} \mathrm{CHO}$	8 e	19b	80	78	S
3	p-FC6 $\mathrm{H}_{4} \mathrm{CHO}$	5c	19c	81	80	S
5	$\mathrm{m}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5 c	19d	89	79	S
6	$\mathrm{m}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	8 e	19d	84	71	S
7	$\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5c	19e	84	84	S
8	$\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	8 e	19e	81	82	S
9	$\mathrm{m}-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5c	19 f	80	79	
10	$\mathrm{m}-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5c	19 f	86	72	
11	p- $\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5c	19g	80	65	S
12	$\mathrm{p}-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	8 e	19g	78	55	S
13	$\mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	5c	19h	87	67	S
14	$\mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	8 e	19h	86	54	S

a The reaction was conducted in hexane solution with a molar ratio of aldehyde/E $\mathrm{t}_{2} \mathrm{Zn} / \mathrm{ligand}=1.0: 2.2: 0.02$. Refer to Table 3 for detailed conditions. ${ }^{\mathrm{b}}$ The alcohol products or their 3,5-dinitrobenzoate derivatives were analyzed by HPLC on a Chiralcel OD column to determine the ee values. ${ }^{\text {c Configuration of the major }}$ enantiomer was assigned according to the measurement of optical rotation.
corresponding 3,5-dinitrobenzoate derivatives on a Chiralcel OD column.

As the addition reaction showed a nonlinear asymmetric effect, it may involve a quite complicated mechanism. ${ }^{3,9}$ To explain why the diol ligands 5-9 are better promoters than the alcohol ligands $\mathbf{1 0}$ for the formation of 19a with higher chemical yields and ee values, one can assume that a diol ligand favors to react with $\mathrm{Et}_{2} \mathrm{Zn}$ to form a cyclic dialkoxyzinc intermediate. ${ }^{9}$ The zinc ion in this intermediate is also chel ated with the anilino or alkoxy group at C-10 (Figure 3, B). By analogy to previously proposed intermediates 3,9 for diol ligandpromoted $\mathrm{Et}_{2} \mathrm{Zn}$ addition reactions, a transition state illustrated in \mathbf{B} is a reasonable working hypothesis. It involves a chairlike form with the participation of two $\mathrm{Et}_{2} \mathrm{Zn}$ molecules. The bulkier phenyl group would take the energetically favorable equatorial position and transfer of an ethyl group occurs at the si-face of PhCHO to furnish the observed (S)-alcohol. Several other possible intermediates were excluded for steric reasons according to examination of their molecular models.

Conclusion

We have demonstrated that asymmetric LAH reduction of ketones and $\mathrm{Et}_{2} \mathrm{Zn}$ addition to aldehydes are effectively promoted by pinane-type tridentate ligands. These two methods are complementary in the prepara-

[^4]tion of optically active secondary alcohols. F ormation of (R)-alcohols is favored in the LAH reduction, whereas formation of (S)-al cohols is favored in the $\mathrm{E}_{2} \mathrm{Zn}$ addition. The diol ligands 5-9 are efficient promoters for asymmetric $\mathrm{Et}_{2} \mathrm{Zn}$ additions, whereas the alcohol $\mathbf{1 0 b}$ is the best modifier for LAH reductions according to our current results. We have also found that asymmetric $\mathrm{Et}_{2} \mathrm{Zn}$ addition promoted by al cohols $\mathbf{1 0}$ showed an enantiotopic preference opposite to those reactions using diol promoters 5-9. The designed compounds 5-10 may not be ideal modifiers by comparison with those reagents showing extremely high enantioselectivity in the similar reactions. ${ }^{2,3}$ H owever, the present methods arestill practical as the pinane-type reagents are easily prepared, and these chiral modifiers are recovered from the reaction mixture in nearly quantitative yields.

Experimental Section

All reactions were carried out under nitrogen atmosphere except as otherwise noted. Melting points are uncorrected. ${ }^{1 \mathrm{H}}$ NMR spectra were recorded at 200, 300, or 400 MHz ; ${ }^{13} \mathrm{C} \mathrm{NMR}$ spectra were recorded at 50,75 , or 100 MHz . Chloroform ($\delta=$ 7.24 ppm) was used as internal standard in ${ }^{1} \mathrm{H}$ NMR spectra. Mass spectra were recorded at an ionizing voltage of 70 or 20 eV. Merck silica gel 60F sheets were used for analytical thinlayer chromatography. Column chromatography was performed on SiO_{2} (70-230 mesh); gradients of EtOAc and n-hexane were used as eluents. Enantiomeric excess was determined by HPLC using a Chiralcel OD column (0.46 cm i.d. $\times 25 \mathrm{~cm}$). The optical rotations were measured in CHCl_{3} solution on a digital polarimeter with a cuvette of 1 cm length.

General Procedure for the Preparation of C-10 Substituted α-Pinanediols 5-9. To a stirred suspension of KH (24 mmol) in dry THF (20 mL) was added dropwise the nucleophile (12 mmol , aniline or alcohol) via a syringe, and the reaction was stirred at room temperature for 30 min after the completion of the addition. A sol ution of myrtenyl bromide (12 mmol) dissolved in THF (10 mL) was then added slowly. The reaction was stirred at room temperature for $3-6 \mathrm{~h}$. The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. THF was removed under reduced pressure, and the residue was extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography (EtOAc/hexane $=1: 20$) to give the C-10 substituted α-pinenes 3 and 4 (6585\% chemical yields).

To a stirred solution of the α-pinene derivative ($\mathbf{3}$ or $\mathbf{4}, 10$ mmol) in THF (28 mL)/water (3 mL)/acetone (10 mL) was added trimethylamine N -oxide (12 mmol) at room temperature. A $1 \% \mathrm{w} / \mathrm{w} \mathrm{OsO}_{4}-\mathrm{THF}$ solution ($8 \mathrm{~mL}, 3 \mathrm{~mol} \%$) was added, and the mixture was refluxed. The reaction was monitored by TLC until no starting material could be detected (ca. 4 days). The reaction mixture was quenched by addition of saturated NaHSO_{3} solution (20 mL). The solvent was removed by rotary evaporation. The aqueous layer was extracted with EtOAc. The combined organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography (silica gel, EtOAc/hexane $=1: 10$) to furnish the desired C-10-substituted α-pinanediols 5-9 (5081\% chemical yields).

General Procedure for the Preparation of C-3 AlkoxySubstituted α-Pinanols 10-12. To a stirred suspension of $\mathrm{NaH}(3 \mathrm{mmol})$ in dry THF $(20 \mathrm{~mL})$ was added a THF solution (5 mL) of the diol 5-9 (1 mmol). After 30 min , a solution of alkyl bromide (1.1 mmol) in THF (3 mL) was added via a syringe, and the mixture was stirred at room temperature for 24 h . The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. THF was removed under reduced pressure, and the residue was extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The crude product was purified by flash column chromatography (silica
gel) with elution of hexane/EtOAc to give the corresponding C-3 alkoxy-substituted α-pinanol products 10-12 (76-92\% chemical yields).

General Procedure for the LAH Reduction of Methyl Ketones (Tables 1 and 2). A stock solution of lithium aluminum hydride (0.6 mL of 1 M solution in $\mathrm{Et}_{2} \mathrm{O}$) was placed in a 10 mL round-bottomed flask. An appropriate chiral modifier (10a-e, $0.66 \mathrm{mmol}, 1.1$ equiv) in THF solution (3 mL) was added dropwise at room temperature, and evolution of hydrogen was apparent. The mixture was stirred at room temperature for 1 h and cooled to $-78^{\circ} \mathrm{C}$, and a solution of methyl ketone ($0.3 \mathrm{mmol}, 0.5$ equiv) in THF (3 mL) was added dropwise. The reaction was complete in 1 h as shown by TLC analysis. A solution of dilute aqueous $\mathrm{HCl}(5 \%)$ solution (3 mL) was added slowly, and the mixture was warmed to room temperature and stirred for 4 h . After removal of THF by rotary evaporation, the mixture was extracted with EtOAc. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was chromatographed on a silica gel column by elution with gradients of EtOAc/ hexane to give the desired al cohol products 14a-18 (83-96\% chemical yields) and the modifier 10a-e (90-96\% recovery). The ee values of the alcohol products were determined by HPLC on a Chiralcel OD column (2-propanol/hexane elution). The absolute configuration of major enantiomers was assigned by comparison of the optical rotations with the reported values.

General Procedure for the Addition of Diethylzinic to Aldehydes (Tables 3-5). The chiral catalyst (5-10, 0.038 $\mathrm{mmol}, 0.02$ equiv) was dissolved in hexane (10 mL) and $\mathrm{Et}_{2} \mathrm{Zn}$ ($4.2 \mathrm{mmol}, 2.2$ equiv, 1 M standard solution in hexane) was injected. An appropriate aldehyde ($1.9 \mathrm{mmol}, 1$ equiv) was added dropwise via a syringe, and the mixture was stirred for 16 h . The mixture was quenched by addition of $5 \% \mathrm{HCl}(3 \mathrm{~mL})$. The hexane layer was separated and subsequently washed with brine. After drying over MgSO_{4} and filtration, the hexane was removed under reduced pressure, and the crude alcohol products 19-22 (60-92\% chemical yields) were purified by flash column chromatography (hexane/EtOAc). The chiral catal yst was recovered in $92-96 \%$ yields. The ee values of the al cohol products were determined by HPLC on a Chiralcel OD column (2-propanol/hexane elution). The absolute configuration of the major enantiomer was assigned by comparison of the optical rotation with the reported value.
(1R ,2S,3S,5R)-(+)-6,6-Dimethyl-2-(N-butylanilino)-methylbicyclo[3.1.1]heptane-2,3-diol (5c): solid; mp 80$81{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+11.1\left(\mathrm{c}=0.94, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3520(\mathrm{OH})$, 1605, $1054 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24$ (dd, J $=$ $8.0,7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.92 (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.09$ (dd, J $=9.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.48(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1$ H), 3.33 (t, J $=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.30(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-$ $2.43(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.97-1.91 (m, 1 H), 1.70 (ddd, J = 13.8, 5.4, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.58$1.26(\mathrm{~m}, 4 \mathrm{H}) 1.47(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}$, $3 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.89, 129.18 (2 C), 118.41, 115.46 (2 C), 76.00, 67.64, 61.33, 53.43, 51.43, 40.55, 38.82, 38.00, 28.03, 27.74, 27.67, 24.28, 20.21, 13.86; MS m/z (rel intensity) 317 ($13, \mathrm{M}^{+}$), 162 (100), 149 (9); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{2} 317.2355$, found 317.2353.
(1R,1'R,2S,3S,5R)-(+)-6,6-Dimethyl-2-(1-phenylbutoxy)-methylbicyclo[3.1.1]heptane-2,3-diol (8e): solid; mp 62$63^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+61.6\left(\mathrm{C}=0.7, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3570,1180$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.24$ (dd, J = 7.8, 5.7 Hz, 1 H), 4.04 (dt, J $=9.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), $3.29(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1$ H), 3.02 (d, J $=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 2.44-2.36 (m, 1 H), 2.21$2.16(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.76(\mathrm{~m}, 2 \mathrm{H})$, $1.71-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.27(\mathrm{~m}, 2$

H), 1.19 ($\mathrm{s}, 3 \mathrm{H}$), $0.89(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.24,128.43$ (2 C), 127.65, 126.66 (2 C), 82.79, 78.25, 75.14, 66.09, 48.95, 40.56, 40.28, 38.65, 37.10, 27.77, 27.74, 23.83, 17.10, 13.90; MS m/z (rel intensity) $318\left(1, \mathrm{M}^{+}\right), 155(72)$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3} 318.2195$, found 318.2198.
(1R,2S,3S,5R)-(-)-2-Anilinomethyl-6,6-dimethyl-3-ethoxybicyclo[3.1.1]heptan-2-ol (10b): oil; $[\alpha]^{25} \mathrm{D}=+11.5$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) 3520,1610 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}$, 1 H), 6.59 (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $4.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 4.15 ($\mathrm{s}, 1$ $\mathrm{H}, \mathrm{OH}), 3.74-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~d}, \mathrm{~J}=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 1 \mathrm{H})$, 2.26-2.17 (m, 2 H), 1.97-1.78 (m, 1 H), 1.75 (ddd, J = 13.8, 5.1, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.47(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.22$ $(\mathrm{t}, \mathrm{J}=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 149.11,129.26$ (2 C), 117.06, 112.93 (2 C), 75.23, 73.92, 65.31, $53.49,49.43,40.42,38.29,35.40,27.64,27.56,24.16,15.54 ;$ MS m/z (rel intensity) 289 (15, M ${ }^{+}$), 106 (100); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}$ 289.2042, found 289.2036.

N-[6,6-Dimethyl-3-ethoxy-2-hydroxybicyclo[3.1.1]hept-10-yl]-N-phenyl-3,5-dinitrobenzamide (13): HPLC (Chiralcel OD, 2-propanol/hexane (2:1), $1 \mathrm{~mL} / \mathrm{min}$) $\mathrm{t}_{\mathrm{R}} 31.5 \mathrm{~min}$ [(1R,2S,3S,5R)-isomer], 42.3 min [(1S,2R,3R,5S)-isomer].

1-(1-Cyclohexenyl)ethanol (18): ${ }^{19}[\alpha]^{25} \mathrm{D}=+7.4$ (c = 2.6, CHCl_{3}) (74\% ee favoring the R enantiomer) (lit. ${ }^{19}[\alpha]^{25} \mathrm{D}+3.29$ ($\mathrm{c}=2.49, \mathrm{CHCl}_{3}$)); HPLC for the 3,5-nitrobenzoate derivative (Chiralcel OD, 2-propanol/hexane (1:40), $0.41 \mathrm{~mL} / \mathrm{min}$) $\mathrm{t}_{\mathrm{R}} 42.2$ min (S-enantiomer), 46.6 min (R-enantiomer).

1-(2-Fluorophenyl)propanol (19b): $:^{21}[\alpha]^{25} \mathrm{D}=-22.4$ ($\mathrm{C}=$ 2.0, CHCl_{3}) (75% ee favoring the S-enantiomer) (lit. ${ }^{21}[\alpha]^{25} \mathrm{D}$ -20.06 ($\mathrm{c}=1.77, \mathrm{CHCl}_{3}, 62 \%$ ee favoring the S enantiomer); HPLC for the 3,5-nitrobenzoate derivative (Chiralcel OD, 2-propanol/hexane (1:5), $0.48 \mathrm{~mL} / \mathrm{min}$) $\mathrm{t}_{\mathrm{R}} 36.4 \mathrm{~min}(R$ enantiomer), 43.4 min (S enantiomer).

Acknowledgment. We thank the National Science Council of the Republic of China for financial support.

Supporting Information Available: Additional physical and spectral data of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

J O982403B

[^5]
[^0]: ${ }^{+}$National Taiwan University. Current address of YJ C: Chung-Tai Institute of Health Science and Technology, Taichung, Taiwan.
 \ddagger National Chung-Hsing University.
 (1) Application of chiral alcohols to the synthesis of leukotrienes and alkaloids: (a) Sato, F.; K obayashi, Y. Synlett 1992, 849. (b) Grigg, R.; Santhakumar, V.; Sridharan, V.; Thornton-Pett, M.; Bridge, A. W. Tetrahedron 1993, 49, 5177. (c) I wata, C.; Takemoto, Y. Chem. Commun. 1996, 2497.
 (2) Reviews of asymmetric reduction of ketones: (a) Nishizawa, M.; Noyori, R. in Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 8, pp 159-182. (b) Singh, V. K. Synthesis 1992, 605. (c) Parratt, J. S.; Cripps, M. C.; Faulconbridge, S. J.; Holt, K. E.; Rippe, C. L.; Savage, S. P.; Taylor, S. J. C. Annu. Rep. Prog. Chem., Sect. B: Org. Chem. 1997, 93, 291. (d) Pereira, R. D. Crit. Rev. Biotechnol. 1998, 18, 25. Examples of asymmetric LAH reductions: (e) Landor, S. R.; Miller, B. J.; Tatchell, A. R. J. Chem. Soc. C 1966, 2280. (f) Baggett, N.; Stribblehill, P. J. Chem. Soc., Perkin Trans. 1 1977, 1123. (g) Noyori, R.; Tomino, I.; Nishizawa, M. J. Am. Chem. Soc. 1979, 101, 5843.
 (3) Reviews of asymmetric $\mathrm{Et}_{2} \mathrm{Zn}$ additions: (a) Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 49. (b) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833. (c) J iang, Y.; Qin, Y.; Huang, Z. Hecheng Huaxue 1993, 1, 1. (d) Berrisford, D. J .; Bolm, C. Angew. Chem., Int. Ed. Engl. 1995, 34, 1717. (e) Mikami, K.; Terada, M. Kagaku to Kogyo (Osaka) 1997, 71, 249.
 (4) (a) Midland, M. M.; McDowell, D. C.; Hatch, R. L.; Tramontano, A. J. Am. Chem. Soc. 1980, 102, 867. (b) Brown, H. C.; Ramachandran, P. V. Acc. Chem. Res. 1992, 25, 16. (c) Deloux, L.; Srebnik, M. Chem. Rev. 1993, 93, 763.

[^1]: (6) Analogous transition states in asymmetric LAH reductions using aminodiol or diamino al cohol tridentate modifiers have been proposed. (a) M orrison, J. D.; Grandbois, E. R.; Howard, S. I.; Weisman, G. R. Tetrahedron Lett. 1981, 22, 2619. (b) Sato, T.; Goto, Y.; Fujisawa, T. Tetrahedron Lett. 1982, 23, 4111. Similar transition states in the reactions of organolithiums: (c) Mukaiyama, T.; Soai, K.; Sato, T.; Shimizu, H.; Suzuki, K. J. Am. Chem. Soc. 1979, 101, 1455. (d) Corey, E. J.; Hannon, F. J. Tetrahedron Lett. 1987, 28, 5233. (e) Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624.

[^2]: (7) (a) Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624. (b) Chang, C.-J.; Fang, J.-M.; Liao, L.-F.J. Org. Chem. 1993, 58, 1754 and the references therein.

[^3]: (8) (a) Haller, R.; Schneider, H. J. Chem. Ber. 1973, 106, 1312. (b)

[^4]: (9) Discussion of reaction mechanism: (a) Kitamura, M.; Suga, S.; Oka, H.; Noyori, R. J. Am. Chem. Soc. 1998, 120, 9800. (b) Goldfuss, B.; Houk, K. N. J . Org. Chem. 1998, 63, 8998. (c) Seebach, D.; Plattner, D. A.; Beck, A. K.; Wang, Y. M.; Hunziker, D. Helv. Chim. Acta 1992, 75, 2171. (d) Nowotny, S.; Vettel, S.; K nochel, P. Tetrahedron Lett. 1994, 35, 4539. (e) Bolm, C.; Mueller, J. Tetrahedron 1994, 50, 4355. (f) Rijnberg, E.; Hovestad, N. J .; Kleij, A. W.; J astrzebski, J. T. B. H.; Boersma, J.; J assen, M. D.; Spek, A. L.; van K oten, G. Organometallics 1997, 16, 2847. (g) Kotsulei, H.; Wakao, M.; Hayakawa, H.; Shimanouchi, T.; Shiro, M. J. Org. Chem. 1996, 61, 8915. Examples of asymmetric $\mathrm{Et}_{2} \mathrm{Zn}$ additions using diol promoters: (h) Bolm, C.; Zehnder, M.; Bur, D. Angew. Chem., Int. Ed. Engl. 1990, 29, 205. (i) Rosini, C.; Franzini, L.; Pini, D.; Salvadori, P. Tetrahedron: Asymmetry 1990, 1, 587. (j) Prasad, K. R. K.; J oshi, N. N. Tetrahedron: Asymmetry 1996, 7, 1957. (k) Kitajima, H.; Ito, K., Katsuki, T. Chem. Lett. 1996, 343. Examples of asymmetric $\mathrm{Et}_{2} \mathrm{Zn}$ additions using terpenic amino alcohol promoters: (I) Masui, M.; Shioiri, T. Synlett 1997, 273. (m) Goralski, C. T.; Chrisman, W.; Hasha, D. L.; Nicholson, L. W.; Rudolf, P. R.; Zakett, D.; Singaram, B. Tetrahedron: Asymmetry 1997, 8, 3863. (n) Genov, M.; Dimitrov, V.; I vanova, V. Tetrahedron: Asymmetry 1997, 8, 3703.

[^5]: (10) (a) Davies, S. G.; Goodfellow, C. L. J . Chem. Soc., Perkin Trans. 1 1990, 393. (b) Takemura, T,; Saito, K.; Nakazawa, S.; Mori, N. Tetrahedron Lett. 1992, 33, 6335.
 (11) Nakamura, K.; Kawasaki, M.; Ohno, A. Bull. Chem. Soc. J pn. 1996, 69, 1079.
 (12) Resnick, S. M.; Torok, D. S.; Gibson, D. T. J . Org. Chem. 1995, 60. 3546.
 (13) Kaufman, T. S. Tetrahedron Lett. 1996, 37, 5329.
 (14) Corrie, J. E. T.; Reid, G. P.; Trenthan, D. R.; Hursthouse, M. B.; Mazid, M. A. J. Chem. Soc., Perkin Trans. 1 1992, 1015.
 (15) Ziffer, H.; K awai, K.; K asai, M.; Imuta, M.; Forussios, C. J . Org. Chem. 1983, 48, 3017.
 (16) (a) Naemura, K.; Murata, M.; Tanaka, R.; Yano, M.; Hirose, K.; Tobe, Y. Tetrahedron: Asymmetry 1996, 7, 3285. (b) Collyen, K. J . Chem. Soc, 1940, 7, 676.
 (17) F antin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P.; Poli, S.; Gardini, F. Tetrahedron: Asymmetry 1993, 4, 1607. (b) Bradshaw, C. W.; Hummel, W.: Wong, C.-H. J . Org. Chem. 1992, 57, 1532.
 (18) Srary, I.; Zajicek, J .; Kocovsky, P. Tetrahedron 1992, 48, 7229.
 (19) Gao, Y.; Hanson, R. M.; Klunder, J. M.; K o, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
 (20) Kang, J.; Lee, J . W.; Kim, J. I. J. Chem. Soc., Chem. Commun. 1994, 2009.
 (21) Seebach, D.; Beck, A. K.; Schmidt, B.; Wang, Y. M. Tetrahedron 1994, 50, 4363.
 (22) Chaloner, P. A.; Langadianou, E.; Perera, S. A. R. J. Chem. Soc., Perkin Trans. 1 1991, 2731.

